Early User Experience with BISON Fuel Performance Code

D. M. Perez

August 2012

The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Early User Experience with BISON Fuel Performance Code

D. M. Perez

August 2012

Idaho National Laboratory Fuel Modeling and Simulation Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy
Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Fuel Modeling and Simulation Department

Early User Experience with BISON Fuel Performance Code

INL/EXT-12-26947 Revision 0

August 2012

SUMMARY

Three Fuel Modeling Exercise II (FUMEX II) LWR fuel irradiation experiments were simulated and analyzed using the fuel performance code BISON to demonstrate code utility for modeling of the LWR fuel performance. Comparisons were made against the BISON results and the experimental data for the three assessment cases. The assessment cases reported within this report include IFA-597.3 Rod 8, Riso AN3 and Riso AN4.

CONTENTS

SUN	1MAR	Υ		iv
1.	Intro	duction		1
2.	IFA-	-597 3 R	od 8	1
	2.1		em Overview	
	2.2		em Reference Documents	
	2.3		em Description	
	2.3	2.3.1	Problem Geometry	
		2.3.2	Problem Operating Parameters	
		2.3.3	Modeling Assumptions and Simplifications	
	2.4	Result	ts	
		2.4.1	BISON Inputs	
		2.4.2	Comparison to Data	7
		2.4.3	Execution Summary	7
3.	Riso	AN3		8
	3.1		em Overview	
	3.2		em Reference Documents	
	3.3		em Description	
	0.0	3.3.1	Problem Geometry	
		3.3.2	Problem Operating Parameters	
		3.3.3	Modeling Assumptions and Simplifications	13
	3.4	Result	ts	13
		3.4.1	BISON Inputs	
		3.4.2	Comparison to Data	
		3.4.3	Execution Summary	17
4.	Riso	AN4		18
	4.1	Proble	em Overview	18
	4.2	Proble	em Reference Documents	19
	4.3	Proble	em Description	20
		4.3.1	Problem Geometry	
		4.3.2	Problem Operating Parameters	
		4.3.3	Modeling Assumptions and Simplifications	23
	4.4		ts	
		4.4.1	BISON Inputs	
		4.4.2	Comparison to Data	
		4.4.3	Execution Summary	26
5.	Cone	clusions		27
6.	Refe	rences		27
0.	1010			21
ΔPD	EMDL	$\mathbf{x} \mathbf{A} \cdot \mathbf{i} \mathbf{F} \mathbf{A}$	A -507 3 ROD & RISON INPLIT FILE	28

APPENDIX B: RISO AN3 BISON INPUT FILE	40
APPENDIX C: RISO AN4 BISON INPUT FILE	54
FIGURES	
Figure 2.1: Base irradiation history for IFA-597.3, carried out at Ringhals BWR	2
Figure 2.2: Halden irradiation periods for IFA-597.3 rod 8.	
Figure 2.3: BISON input power history for IFA-597.3 rod 8.	4
Figure 2.4: BISON input clad surface temperature as a function of time.	5
Figure 2.5: 2-D axi-symmetric linear mesh for IFA-597.3 Rod 8 simulation.	6
Figure 2.6: BISON fuel centerline temperature comparison to Halden experimental data	7
Figure 3.1: Base irradiation history for fuel segment CB8, carried out at Biblis A PWR	8
Figure 3.2: Riso DR3 irradiation period for test AN3 (CB8-2R).	9
Figure 3.3: BISON input axial power profile for Riso AN3	11
Figure 3.4: BISON input power history for Riso AN3.	11
Figure 3.5: BISON input clad surface temperature as a function of time.	12
Figure 3.6: 2-D axi-symmetric linear mesh for Riso AN3 simulation. Note: the axial aspect ratio has been scaled by 0.05.	14
Figure 3.7: BISON fuel centerline temperature comparison to Riso experimental data	15
Figure 3.8: BISON plenum pressure comparison to Riso AN3 experimental data	16
Figure 3.9: BISON total fission gas release comparison to Riso AN3 experimental data	16
Figure 4.1: Base irradiation history for fuel segment CB7, carried out at Biblis A PWR	18
Figure 4.2: Riso DR3 irradiation period for test AN4 (CB7-2R).	19
Figure 4.3: BISON input axial power profile for Riso AN4	21
Figure 4.4: BISON input power history for Riso AN4.	21
Figure 4.5: 2-D axi-symmetric linear mesh for Riso AN4 simulation	24
Figure 4.6: BISON fuel centerline temperature comparison to Riso AN4 experimental data	25
Figure 4.7: BISON plenum pressure comparison to Riso An4 experimental data	26

TABLES

Table 2.1: IFA-597.3 rod 8 gometeric input parameters	3
Table 2.2: IFA-597.3 rod 8 operational input parameters.	4
Table 2.3: Execution summary for IFA-597.3 rod 8.	7
Table 3.1: Riso AN3 gometeric input parameters.	10
Table 3.2: Riso AN3 operational input parameters	12
Table 3.3: Execution summary for Riso AN3	17
Table 4.1: Riso AN4 gometeric input parameters.	20
Table 4.2: Riso AN4 operational input parameters	22
Table 4.3: Execution summary for Riso AN4	26

Early User Experience with BISON Fuel Performance Code

1. Introduction

A series of published LWR fuel irradiation experiments were chosen to demonstrate BISON's utility for fuel performance analysis. The original intent was to examine the capability to predict the fuel centerline temperature, plenum pressure and total fission gas released. It was found that the fission gas release model is only partially functional, therefore, for two of the three cases summarized within this report; the fission gas release was not modeled.

The three assessment cases summarized within this report are IFA-597.3 Rod 8, Riso AN3 and Riso AN4. BISON predicts the fuel centerline temperature well in all three cases; however, the plenum pressure and total fission gas release were not predicted well (see detailed sections below). All of the files and documentation associated with each assessment problem can be found in the MOOSE repository under the /bison/assessment/ directory.

2. IFA-597.3 Rod 8

2.1 Problem Overview

The IFA-597.3 Rod 8 experiment utilized a re-fabricated rod from the Ringhals BWR reactor. The mother rod was irradiated at a low average power of ~16kW/m for approximately 12 years (to a discharge burnup of ~67 MWd/kgU). The re-fabricated rod, rod 8, was irradiated in the Halden reactor for approximately 4 months. Figure **2.1** shows the Ringhals base irradiation power history for rod 8 and Figure **2.2** shows the Halden power history for rod 8.

Figure 2.1: Base irradiation history for IFA-597.3, carried out at Ringhals BWR.

Figure 2.2: Halden irradiation periods for IFA-597.3 rod 8.

2.2 Problem Reference Documents

- 1. PIE of High Burnup BWR Fuel Rod IFA-597.3 Rod 8 [1]
- 2. The Integral Fuel Rod Behavior Test IFA-597.2: Pre-Characterization and Analysis of the Measurements [2]
- 3. The Integral Fuel Rod Behavior Test IFA-597.3: Analysis of the Measurements [3]
- 4. FUMEX II Final Report 2002-2007 [4]

2.3 Problem Description

2.3.1 Problem Geometry

The geometric input parameters for rod 8 are summarized in Table 2.1.

Table 2.1: IFA-597.3 rod 8 gometeric input parameters.

Fuel Rod		
Fuel stack height	cm	35.39
Effective plenum volume	cm ³	4.58
Mean diametral gap	cm	0.0211
Fuel Pellet		
Outer diameter	cm	1.0439
Inner diameter	cm	0.25
Grain diameter	um	7.83
Surface roughness	um	1.38
Length of hollow section	cm	3.4
Dishing - One end		
Dish diameter	cm	0.5
Dish depth	cm	0.01
Chamfer width	cm	0.07
Chamfer depth	cm	0.02
Cladding – Zr2		
Outer diameter	cm	1.1225
Inner diameter	cm	1.065
Surface roughness	um	1.3

2.3.2 Problem Operating Parameters

The power history described in Section 2.1 was modified to smooth out the base irradiation. The power history used as an input parameter for this simulation is shown in Figure 2.3. The other operating parameters are summarized in Table 2.2. The provided measured clad surface temperature as a function of time is shown in Figure 2.4.

Figure 2.3: BISON input power history for IFA-597.3 rod 8.

Table 2.2: IFA-597.3 rod 8 operational input parameters.

Base Irrdiation		
Plenum pressure	MPa	0.1
Fill gas		Не
Coolant inlet temperature	C	286
Coolant pressure	MPa	7.0
Fast neutron flux	$n/(cm^2*s)$ per (kW/m)	$2.3*10^{12}$
Power Ramps		
Plenum pressure	Mpa	0.5
Fill gas		He
Coolant inlet temperature	C	232
Coolant pressure	MPa	3.2
Fast neutron flux	$n/(cm^2*s)$ per (kW/m)	$1.6*10^{11}$

Figure 2.4: BISON input clad surface temperature as a function of time.

2.3.3 Modeling Assumptions and Simplifications

- 1. Fuel rod was modeled as one smeared pellet.
- 2. Density of fuel is 10450 kg/m³.
- 3. The thermocouple hole was modeled as a hole through the entire length of the fuel rod.
- 4. Dish and Chamfer were not modeled.
- 5. Substituted Zr-2 cladding material with Zr-4 material properties.
- 6. Fission gas release is zero throughout the simulation.

2.4 Results

2.4.1 BISON Inputs

A 2-dimensional axi-symmetric linear mesh was used to model the geometry of rod 8. The fuel mesh consisted of 17 axial nodes and 12 radial nodes and the clad mesh consisted of 9 axial nodes and 5 radial nodes, the meshed fuel pellet is shown in Figure 2.5. The input file for this experiment can be found in Appendix A.

Figure 2.5: 2-D axi-symmetric linear mesh for IFA-597.3 Rod 8 simulation.

2.4.2 Comparison to Data

The IFA-597.3 Rod 8 experiment irradiated at Halden is used to demonstrate the codes' capability to capture the fuel centerline temperature and the total fission gas released. At this time BISON is not capable of capturing the total fission gas release during transient analysis, therefore, the only comparison made for this case was the fuel centerline temperature during the first four power ramps and the final power ramps (see Figure 2.1).

BISON predicts the fuel centerline temperature well; however, the temperature falls slightly under the measured experiment values (see Figure 2.6). This is likely due to zero fission gas release modeled for this problem.

Figure 2.6: BISON fuel centerline temperature comparison to Halden experimental data.

2.4.3 Execution Summary

Table 2.3: Execution summary for IFA-597.3 rod 8.

Date	Machine	Number of Processors	Time to Completion	MOOSE Version
20120814	Mac Workstation, OS X	1	0 h, 45 min	12622

3. Riso AN3

3.1 Problem Overview

The Riso AN3 experiment utilized a re-fabricated rod from the Biblis A PWR reactor. The mother rod, CB8, was irradiated over four reactor cycles from July 1982 to October 1986 (to an average discharge burnup of ~41.4 MWd/kgU). The re-fabricated rod, CB8-2R (test AN4), was irradiated in the Riso R3 water-cooled HP1 rig under PWR conditions for three days from January 8, 1988 to January 11, 1988. Figure 3.1 shows the Biblis base irradiation power history for test AN3 and Figure 3.2 shows the Riso DR3 power history for test AN3.

Test AN3 was fitted with a fuel centerline thermocouple and a pressure transducer. The fuel centerline temperature, fission gas release and rod internal pressure can be used for comparison.

Figure 3.1: Base irradiation history for fuel segment CB8, carried out at Biblis A PWR.

Figure 3.2: Riso DR3 irradiation period for test AN3 (CB8-2R).

3.2 Problem Reference Documents

- 1. The Third Riso Fission Gas Project: Burnup Test AN3 (CB8-2R) [5]
- 2. FUMEX II Final Report 2002-2007 [4]

3.3 Problem Description

3.3.1 Problem Geometry

The geometric input parameters for the Riso AN3 test are summarized in Table 3.1.

Table 3.1: Riso AN3 gometeric input parameters.

Fuel Rod		
Fuel stack height	cm	28.6
Plenum height	cm	6.1
Mean diametral gap	cm	0.0205
Fuel Pellet		
Outer diameter	cm	0.9053
Inner diameter	cm	0.25
Grain diameter	um	6.0
Surface roughness	um	1.0
Length of hollow section	cm	4.1
Cladding – Zr2		
Outer diameter	cm	1.081
Inner diameter	cm	0.9258
Surface roughness	um	1.0

3.3.2 Problem Operating Parameters

The power histories described in Section 3.1 were combined together with an axial power profile shown in Figure 3.3. The power history used as an input parameter for this simulation is shown in Figure 3.4. The other operating parameters are summarized in Table 3.2. The provided measured clad surface temperature as a function of time is shown in Figure 3.5.

Figure 3.3: BISON input axial power profile for Riso AN3.

Figure 3.4: BISON input power history for Riso AN3.

Table 3.2: Riso AN3 operational input parameters.

Base Irrdiation		
Plenum pressure	MPa	2.31
Fill gas		Не
Coolant inlet temperature	C	287.7
Coolant pressure	MPa	15.52
Fast neutron flux	$n/(cm^2*s)$ per (kW/m)	$3.4*10^{12}$
Power Ramps		
Plenum pressure	Mpa	1.57
Fill gas		Не
Coolant inlet temperature	C	NA
Coolant pressure	MPa	15.3
Fast neutron flux	$n/(cm^2*s)$ per (kW/m)	$4.0*10^{11}$

Figure 3.5: BISON input clad surface temperature as a function of time.

3.3.3 Modeling Assumptions and Simplifications

- 1. Fuel rod was modeled as one smeared pellet.
- 2. Density of fuel is 10303 kg/m³.
- 3. The plenum height was adjusted such that the plenum volume at the beginning of the bump test was approximately 7.0 cm³.
- 4. Based off the observations made in the Riso AN4 assessment problem, the maximum grain radius measured during post-irradiation examination (PIE) of 11.7 um was used for the simulation.
- 5. The contact pressure specified for the gap heat transfer calculation was 35 MPA (whish is approximately the pressure required to plastically deform the clad based on a yield stress of 230 MPa).
- 6. The clad temperature was assumed to be 500K during the re-fabrication down time.
- 7. The total jump distance for the gap heat transfer term was set to 10 um [6].
- 8. The entire fuel stack was shifted up from the bottom of the cad by 5.1 mm, which is the height of the insulator pellet at the bottom of the fuel rod.

3.4 Results

3.4.1 BISON Inputs

A 2-dimensional axi-symmetric linear element mesh was used to model the geometry of the rod used in the AN3 experiment. The fuel was meshed using two fuel pellets. The first pellet was 4.1 cm in length with a hole down the center, the second pellet was 24.5 cm in length with no hole down the center the first pellet's mesh consisted of 29 axial nodes and 10 radial nodes (for an aspect ratio of 4.07). The second pellet's mesh consisted of 166 axial nodes and 13 radial nodes (for an aspect ratio of 3.93). The clad mesh consisted of 131 axial nodes and 3 radial nodes (see Figure 3.6). The input file for this experiment can be found in Appendix B.

Figure 3.6: 2-D axi-symmetric linear mesh for Riso AN3 simulation. Note: the axial aspect ratio has been scaled by 0.05.

3.4.2 Comparison to Data

The Riso AN3 experiment is used to assess the codes' capability to capture the fuel centerline temperature, plenum pressure and the total fission gas released. At this time BISON is not capable of capturing the total fission gas release during transient analysis accurately; however, the total fission gas released model was used for this simulation and therefore is used for comparison.

BISON predicts the fuel centerline temperature well (see Figure 3.7); however, the plenum pressure stays relatively low and fairly constant throughout the bump test (see Figure 3.8). The total fission gas released is shown in Figure 3.9.

Figure 3.7: BISON fuel centerline temperature comparison to Riso experimental data.

Figure 3.8: BISON plenum pressure comparison to Riso AN3 experimental data.

Figure 3.9: BISON total fission gas release comparison to Riso AN3 experimental data.

3.4.3 Execution Summary

Table 3.3: Execution summary for Riso AN3.

Date	Machine	Number of Processors	Time to Completion	MOOSE Version
20120622	Mac Workstation, OS X	8	6h, 15min	11266

4. Riso AN4

4.1 Problem Overview

The Riso AN4 experiment utilized a re-fabricated rod from the Biblis A PWR reactor. The mother rod, CB7, was irradiated over four reactor cycles from July 1982 to October 1986 (to an average discharge burnup of ~41.4 MWd/kgU). The re-fabricated rod, CB7-2R (test AN4), was irradiated in the Riso DR3 water-cooled HP1 rig under PWR conditions for three days from December 4, 1987 to December 7, 1987. Figure 4.1 shows the Riso DR3 power history for test AN4.

Test AN4 was fitted with a fuel centerline thermocouple and a pressure transducer. The fuel centerline temperature, fission gas release and rod internal pressure can be used for comparison.

Figure 4.1: Base irradiation history for fuel segment CB7, carried out at Biblis A PWR.

Figure 4.2: Riso DR3 irradiation period for test AN4 (CB7-2R).

4.2 Problem Reference Documents

- 1. The Third Riso Fission Gas Project: Bump Test AN4 (CB7-2R) [7]
- 2. FUMEX II Final Report 2002-2007 [4]

4.3 Problem Description

4.3.1 Problem Geometry

The geometric input parameters for the Riso AN4 test are summarized in Table 4.1.

Table 4.1: Riso AN4 gometeric input parameters.

Fuel Rod		
Fuel stack height	cm	29.2
Plenum height	cm	3.4
Mean diametral gap	cm	0.0205
Fuel Pellet		
Outer diameter		
Inner diameter		
Grain diameter		
Surface roughness		
Length of hollow section		
Dishing – Both ends		
Dish diameter	cm	0.665
Dish depth	cm	0.013
Chamfer width	cm	0.046
Chamfer depth	cm	0.016
Cladding – Zr2		
Outer diameter	cm	1.081
Inner diameter	cm	0.9258
Surface roughness	um	1.0

4.3.2 Problem Operating Parameters

The power histories described in Section 4.1 were combined together with an axial power profile shown in Figure 4.3. The power history used as an input parameter for this simulation is shown in Figure 4.4. The other operating parameters are summarized in Table 4.2.

Figure 4.3: BISON input axial power profile for Riso AN4.

Figure 4.4: BISON input power history for Riso AN4.

Table 4.2: Riso AN4 operational input parameters.

Base Irrdiation		
Plenum pressure	MPa	2.31
Fill gas		Не
Coolant inlet temperature	C	287.7
Coolant pressure	MPa	15.52
Fast neutron flux	$n/(cm^2*s)$ per (kW/m)	$3.4*10^{12}$
Power Ramps		
Plenum pressure	Mpa	0.1
Fill gas		Xe
Coolant inlet temperature	C	NA
Coolant pressure	MPa	15.3
Fast neutron flux	$n/(cm^2*s)$ per (kW/m)	$4.0*10^{11}$

4.3.3 Modeling Assumptions and Simplifications

- 1. Fuel rod was modeled as one smeared pellet.
- 2. Density of fuel is 10303 kg/m³.
- 3. The thermocouple hole was modeled as a hole through the entire length of the fuel rod.
- 4. The maximum grain radius measured during post-irradiation examination (PIE) of 9.8 um was used for the simulation.
- 5. The contact pressure specified for the gap heat transfer calculation was 35 MPa (which is approximately the pressure required to plastically deform the clad).

4.4 Results

4.4.1 BISON Inputs

A 2-dimensional axi-symmetric linear element mesh was used to model the geometry of the rod used in the AN4 experiment. The fuel mesh consisted of 141 axial nodes and 9 radial nodes (for an aspect ratio of 5.1); the clad mesh consisted of 113 axial nodes and 5 radial nodes (see Figure 4.5). The input file for this experiment can be found in Appendix C.

Figure 4.5: 2-D axi-symmetric linear mesh for Riso AN4 simulation.

4.4.2 Comparison to Data

The Riso AN4 experiment is used to demonstrate the codes' capability to copture the fuel centerline temperature, plenum pressure and the total fission gas released. At this time BISON is not capable of capturing the total fission gas released during transient analysis, therefore, the only comparisons made were the fuel centerline temperature and plenum pressure.

BISON predicts the fuel centerline temperature well (see Figure 4.6); however, the plenum pressure stays relatively low and fairly constant throughout the bump test (see Figure 4.7). This is likely because the fission gas release model in the code was turned off for this simulation.

Figure 4.6: BISON fuel centerline temperature comparison to Riso AN4 experimental data.

Figure 4.7: BISON plenum pressure comparison to Riso An4 experimental data.

4.4.3 Execution Summary

Table 4.3: Execution summary for Riso AN4.

Date	Machine	Number of Processors	Time to Completion	MOOSE Version
20120614	Mac Workstation, OS X	8	1h, 20min	11181

5. Conclusions

Over the course of this work, the models of three LWR fuel irradiation experiments were developed and executed using the fuel performance code BISON. The starting information for model development was attained from publications detailing the experiments. The effort consisted of development of the input and mesh files describing fuel design and materials, development of the power history files, execution of the code, examination of the output files to plot the results summarized in this report, and comparison of the BISON results with the measurements obtained during the experiments.

The highlights of the early user experience are as follows:

- Code installation was performed by the development team. Periodic code updates were performed by the operator.
- BISON input capability encompassed necessary functions to accurately describe fuel design
 and operating conditions. The power history capability included axial and radial power
 profiles. Development of the input and mesh files was greatly assisted by the example
 problems and BISON workshop materials. In some cases, errors in the input file are flagged
 during code execution attempts.
- BISON execution on a Mac Workstation is a simple process requiring minimum effort form the operator. The execution time varies and can reach several hours.
- Use of the PARAVIEW software to examine the input required initial training. ENSIGHT is a second software option to examine the output file also requires training to use.

As the BISON code is still under development, less emphasis was placed in this study on the agreement of the code results with experimental data. Nevertheless, code predictions of the fuel centerline temperature were found adequate in all three analyzed cases. BISON fission gas release model is only partially functional and was not utilized in two of the three analyzed cases.

6. References

- 1. K. Malen et al., "PIE of high burn-up BWR fuel rod IFA-597.3 rod 8," HRP-356/18, Halden.
- 2. M. Vankeerbergen, "The Integral Fuel Rod Behaviour Test IFA-597.2: Pre-characterization and Analysis of Measurements," HWR-442, Halden, March 1996.
- 3. I. Matsson and J. A. Turnbull, "The Integral fuel rod behavior test IFA-597.3: Analysis of the Measurements," HWR-543, Halden, January 1998.
- 4. "Fuel Modeling at Extended Burnup (FUMEX II): Report of a coordinated research project," IAEA-TECDPC-xxxxx, IAEA, 2002-2007.
- 5. "The Third Riso Fission Gas Project: Burnup Test AN3 (CB8-2R)," Riso-FGP3-AN3, Riso, September 1990.
- 6. A. M. Ross and R. L. Stoute, "Heat transfer coefficient between UO₂ and Zircaloy-2," AECL-1552, Atomic Energy of Canada Limited, 1962.
- 7. "The Third Riso Fission Gas Project: Burnup Test AN4 (CB7-2R)," Riso-FGP3-AN4, Riso, September 1990.

APPENDIX A: IFA-597.3 ROD 8 BISON INPUT FILE

```
[GlobalParams]
 density = 10450.0
 disp x = disp x
 disp y = disp y
 order = FIRST
 family = LAGRANGE
 energy_per_fission = 3.2e-11 # J/fission
# Specify coordinate system type
[Problem]
 coord type = RZ
# Set problem dimension (2d-rz here) and import mesh file
[Mesh]
 file = pelletcladsmearedmedium1 rz.e
 displacements = 'disp x disp y'
patch size = 1000
[]
# Define dependent variables, element order and shape function family, and initial conditions
[Variables]
[./disp x]
[../]
 [./disp_y]
[../]
[./temp]
  initial condition = 300.0 # set initial temp to ambient
[../]
[]
# Define auxillary variables, element order and shape function family
[AuxVariables]
 [./fission rate]
  block = 2
                # defined for the fuel material (block 2) only
 \lceil ... / \rceil
 [./fast_neutron_flux]
  block = 1
 [../]
 [./fast neutron fluence]
  block = 1
 [../]
```

```
[./burnup]
  block = 2
 [../]
[./stress xx]
                # stress aux variables are defined for output; this is a way to get integration point
variables to the output file
  order = CONSTANT
  family = MONOMIAL
 [../]
 [./stress yy]
  order = CONSTANT
  family = MONOMIAL
 [../]
 [./stress zz]
  order = CONSTANT
  family = MONOMIAL
 [./vonmises]
  order = CONSTANT
  family = MONOMIAL
 [../]
 [./creep strain mag]
  order = CONSTANT
  family = MONOMIAL
 \lceil ... / \rceil
 [./hydrostatic stress]
  order = CONSTANT
  family = MONOMIAL
[../]
# Define functions to control power and boundary conditions
[Functions]
 [./power profile]
  type = PiecewiseLinearFile # reads and interpolates an input file containing rod average linear power
vs time
  yourFileName = IFA-597 3 ROD8 power history.csv
  scale factor = 1
 [../]
[./axial peaking factors]
                          # reads and interpolates an input file containing the axial power profile vs
  type = PiecewiseBilinear
  yourFileName = IFA-597 3 ROD8 axial peaking.csv
  scale factor = 1
  axis = 1
 [../]
```

```
# reads and interpolates input data defining amplitude curve for coolant and
 [./pressure ramp]
fill gas pressure
  type = PiecewiseLinear
  x = '0 1e4 2.69e8 269247456 280265184'
  y = '0 \ 1 \ 1 \ 0.457 \ 0.457'
\lceil ... / \rceil
 [./flux]
                 # reads and interpolates input data defining fast neutron flux
  type = PiecewiseLinearFile
  yourFileName = IFA-597 3 ROD8 fast neutron flux.csv
 [../]
 [./clad temp bc]
  type = PiecewiseLinearFile
  yourFileName = IFA-597 3 ROD8 clad bc.csv
  format = columns
 [../]
  type = PiecewiseLinearFile # reads and interpolates an input file containing rod average linear power
vs time
  yourFileName = IFA-597 3 ROD8 power history.csv
 [../]
[]
# Specify that we need solid mechanics (divergence of stress)
[SolidMechanics]
 [./solid]
  disp r = disp x
  disp z = disp y
  temp = temp
 \lceil ... / \rceil
[]
# Define kernels for the various terms in the PDE system (in all cases here, the axisymmetric (RZ)
version is specified)
[Kernels]
 [./gravity]
               # body force term in stress equilibrium equation
  type = Gravity
  variable = disp y
  value = -9.81
 [../]
 [./heat]
              # gradient term in heat conduction equation
  type = HeatConduction
  variable = temp
 [../]
```

```
[./heat ie]
               # time term in heat conduction equation
  type = HeatConductionImplicitEuler
  variable = temp
 [../]
 [./heat source] # source term in heat conduction equation
   type = NeutronHeatSource
   variable = temp
   block = 2
                         # fission rate applied to the fuel (block 2) only
   fission rate = fission rate # coupling to the fission rate aux variable
\lceil ... / \rceil
[]
# Define auxilliary kernels for each of the aux variables
[AuxKernels]
 [./fissionrate]
                      # computes the volumetric fission rate as a function of time and space
  type = FissionRateAuxLWR
  variable = fission rate
  block = 2
  function1 = power profile
                                     # using the power function defined above
  function2 = axial peaking factors # using the axial power profile function defined above
  pellet diameter = 0.010439
# pellet inner diameter = 0.0 \, \text{# ignore T/C} hole at top of fuel stack
  pellet inner diameter = 0.0025
  execute on = timestep begin
 [../]
 [./fast neutron flux]
  type = FastNeutronFluxAux
  variable = fast neutron flux
  block = 1
  axial power profile = axial peaking factors
  function = flux
  factor = 3.728e17
  execute on = timestep begin
 [../]
 [./fast neutron fluence]
  type = FastNeutronFluenceAux
  variable = fast neutron fluence
  fast neutron flux = fast neutron flux
  execute on = timestep begin
 [../]
 [./burnup]
                      # computes burnup as a function of time and space
  type = BurnupAux
  variable = burnup
  block = 2
  fission rate = fission rate
                                   # coupling to the fission rate aux variable
  molecular weight = 0.270
```

```
execute on = timestep begin
 [../]
 [./hydrostatic stress]
  block = 2
  type = MaterialTensorAux
  tensor = stress
  variable = hydrostatic stress
  quantity = hydrostatic
  execute on = timestep
 [../]
 [./stress xx]
                      # computes stress components for output
  type = MaterialTensorAux
  tensor = stress
  variable = stress xx
  index = 0
  execute on = timestep # for efficiency, only compute at the end of a timestep
 [../]
 [./stress yy]
  type = MaterialTensorAux
  tensor = stress
  variable = stress yy
  index = 1
  execute on = timestep
 [../]
 [./stress zz]
  type = MaterialTensorAux
  tensor = stress
  variable = stress zz
  index = 2
  execute on = timestep
 [../]
 [./vonmises]
  type = MaterialTensorAux
  tensor = stress
  variable = vonmises
  quantity = vonmises
  execute on = timestep
 [...]
 [./creep strain mag]
  type = MaterialTensorAux
  tensor = creep strain
  variable = creep strain mag
  quantity = plasticstrainmag
  execute on = timestep
 [../]
[]
# Define mechanical contact between the fuel (sideset=10) and the clad (sideset=5)
```

```
[Contact]
 [./pellet clad mechanical]
  master = 5
  slave = 10
  disp x = disp x
  disp_y = disp_y
  penalty = 1e7
  model = experimental
# model = glued
                       # surfaces are tied upon contact
[../]
П
# Define thermal contact between the fuel (sideset=10) and the clad (sideset=5)
[ThermalContact]
 [./thermal contact]
  type = GapHeatTransferLWR
  variable = temp
  master = 5
  slave = 10
  initial moles = initial moles
                                   # coupling to a postprocessor which supplies the initial plenum/gap
gas mass
                                     # coupling to a postprocessor which supplies the fission gas addition
  gas released = fis gas released
  jumpdistance clad = 5e-6
  jumpdistance fuel = 5e-6
  roughness clad = 1.3e-6
  roughness fuel = 1.38e-6
  initial gas fractions = '1 0 0 0 0 0 0'
  refab time = 269247456
  refab gas fractions = '1 0 0 0 0 0 0'
[../]
\prod
# Define boundary conditions
[BCs]
# pin pellets and clad along axis of symmetry (y)
 [./no x all]
  type = DirichletBC
  variable = disp x
  boundary = 12
  value = 0.0
 \lceil ... / \rceil
# pin clad bottom in the axial direction (y)
 [./no y clad bottom]
  type = DirichletBC
  variable = disp_y
  boundary = '1'
  value = 0.0
 [../]
```

```
# pin fuel bottom in the axial direction (y)
 [./no y fuel bottom]
  type = DirichletBC
  variable = disp y
  boundary = '1020'
  value = 0.0
 \lceil ... / \rceil
[./temp]
 type = FunctionDirichletBC
 boundary = '1 2 3'
 variable = temp
 function = clad temp bc
[../]
 [./Pressure]
# apply coolant pressure on clad outer walls
  [./coolantPressure]
   boundary = '1 2 3'
   factor = 7.0e6 #changes to 3.2e6 after 59 MWd/kgUO2
   function = pressure ramp # use the pressure ramp function defined above
  [../]
 [../]
 [./PlenumPressure]
# apply plenum pressure on clad inner walls and pellet surfaces
  [./plenumPressure]
   boundary = 9
   initial pressure = 1.0e5 #changes to 5e5 after 59 MWd/kgUO2
   startup time = 1.0e4
   R = 8.3143
   output initial moles = initial moles
                                            # coupling to post processor to get inital fill gas mass
   temperature = ave temp interior
                                           # coupling to post processor to get gas temperature
approximation
   volume = gas volume
                                        # coupling to post processor to get gas volume
   material input = fis gas released
                                           # coupling to post processor to get fission gas added
   output = plenum pressure
                                         # coupling to post processor to output plenum/gap pressure
   refab time = 269247456
   refab pressure = 5e5
   refab temperature = 293
   refab_volume = 6e-6
  [../]
 [../]
[]
# Define material behavior models and input material property data
[Materials]
 [./density clad]
  type = Density
  block = 1
```

```
density = 6551.0
 [../]
 [./density fuel]
  type = Density
  block = 2
 [../]
 [./fuel thermal]
                              # temperature and burnup dependent thermal properties of UO2 (bison
kernel)
  type = ThermalUO2
  block = 2
  temp = temp
  burnup = burnup
[../]
[./fuel solid mechanics swelling]
                                    # free expansion strains (swelling and densification) for UO2
(bison kernel)
  type = VSwellingUO2
  block = 2
  temp = temp
  burnup = burnup
 [../]
 [./fuel creep]
                             # thermal and irradiation creep for UO2 (bison kernel)
  type = CreepUO2
  block = 2
  disp r = disp x
  disp z = disp y
  temp = temp
  fission rate = fission rate
  youngs modulus = 2.e11
  poissons ratio = .345
  thermal expansion = 10e-6
  grain radius = 3.915e-6
  oxy to metal ratio = 2.0
  max its = 10
  output iteration info = false
 [../]
 [./fuel relocation]
  type = Relocation UO2
  block = 2
  burnup = burnup
  diameter = 0.010439 #Fuel pellet diameter in m
  gap = 2.11e-4 \# diametral gap in m
  burnup relocation stop = 0.051
 [./clad thermal]
                               # general thermal property input (elk kernel)
```

```
type = HeatConductionMaterial
  block = 1
  thermal conductivity = 16.0
  specific heat = 330.0
 [../]
 [./clad solid mechanics]
                                  # thermoelasticity and thermal and irradiation creep for Zr4 (bison
kernel)
  type = ThermalIrradiationCreepZr4
  block = 1
  disp r = disp x
  disp z = disp y
  temp = temp
  fast neutron flux = fast neutron flux
  youngs modulus = 7.5e10
  poissons ratio = 0.3
  thermal expansion = 5.0e-6
  max its = 5000
  output iteration info = false
# output = max creep its
 [../]
 [./clad irrgrowth]
  type = IrradiationGrowthZr4
  block = 1
  fast neutron fluence = fast neutron fluence
 [../]
 [./fission gas release]
                               # Forsberg-Massih fission gas release mode
  type = ForMas
  block = 2
  temp = temp
  fission rate = fission rate
                                # coupling to fission rate aux variable
  grain radius = 3.915e-6
  plenum pressure = plenum pressure
  hydrostatic stress = hydrostatic stress
  calibration factor = 100
 [../]
[]
[Dampers]
 [./limitT]
  type = MaxIncrement
  max increment = 100.0
  variable = temp
 [../]
[]
[Executioner]
 type = Transient
```

```
# PETSC options
petsc options = '-snes mf operator -ksp monitor -ksp gmres modifiedgramschmidt'
 petsc options iname = '-snes type -snes ls -ksp gmres restart -pc_type -pc_composite_pcs -
sub 0 pc hypre type -sub 0 pc hypre boomeramg max iter -
sub 0 pc hypre boomeramg grid sweeps all-sub 1 sub pc type-pc composite type-ksp type-
mat mffd type'
petsc options value = 'ls
                              basic 201
                                                   composite hypre,asm
                                                                             boomeramg
                                     multiplicative
                                                      fgmres ds'
 # controls for linear iterations
1 \text{ max its} = 100
 1 \text{ tol} = 8e-3
 # controls for nonlinear iterations
 nl max its = 15
 nl rel tol = 1e-4
 nl abs tol = 1e-10
 # time control
 start time = 0.0
 dt = 2.0e2
 end time = 280265184
 num steps = 5000.0
# direct control of time steps vs time (optional)
               1.0e4 1.0e7 5.6e7 5.8e7 6.8e7 8.0e7 2.660e8 2.6901e8 2.802e8'
 time t = 0
time dt = '2.0e2 4.0e3 2.0e6 2.0e6 2.0e6 2.0e6 2.0e6 4.0e3 4.0e3'
# time t = 0
               1.0e4 1.0e7 5.6e7 5.8e7 6.8e7 8.0e7'
# time dt = '2.0e2 4.0e3 2.0e6 2.0e6 2.0e5 2.0e5 3.0e5'
[]
# Define postprocessors (some are required as specified above; others are optional; many others are
available)
[Postprocessors]
                            # average temperature of the cladding interior and all pellet exteriors
 [./ave temp interior]
  type = SideAverageValue
  boundary = 9
  variable = temp
 [../]
 [./clad inner vol]
                          # volume inside of cladding
 type = InternalVolume
  boundary = 7
  variable = disp x
  output = file
 [../]
 [./pellet volume]
                          # fuel pellet total volume
```

2

```
type = InternalVolume
 boundary = 8
 variable = disp x
 output = file
[../]
[./avg clad temp]
                           # average temperature of cladding interior
 type = SideAverageValue
 boundary = 7
 variable = temp
[../]
[./fis gas produced]
                           # fission gas produced (moles)
 type = ElementIntegralFisGasProduce
 variable = temp
 block = 2
\lceil ... / \rceil
[./fis_gas_released]
                          # fission gas released to plenum (moles)
 type = ElementIntegralFisGasRelease
 variable = temp
 block = 2
[../]
[./gas volume]
                         # gas volume
 type = InternalVolume
 boundary = 9
 variable = disp x
[../]
[./plenum pressure]
                          # pressure within plenum and gap
 type = Reporter
[../]
[./initial moles]
                       # initial fill gas mass (moles)
 type = Reporter
 output = file
[../]
[./flux from clad]
                         # area integrated heat flux from the cladding
 type = SideFluxIntegral
 variable = temp
 boundary = 5
 diffusivity = thermal conductivity
[../]
[./flux from fuel]
                        # area integrated heat flux from the fuel
 type = SideFluxIntegral
 variable = temp
 boundary = 10
 diffusivity = thermal conductivity
```

```
[../]
 [./_dt]
                    # time step
  type = PrintDT
 [../]
 [./nonlinear its]
                       # number of nonlinear iterations at each timestep
  type = PrintNumNonlinearIters
 [../]
 [./rod total power]
  type = ElementIntegralPower
  variable = temp
  fission rate = fission rate
  block = 2
 [../]
 [./average fission rate]
  type = AverageFissionRate
  rod ave lin pow = power profile
  fuel outer radius = 0.0052195
  fuel inner radius = 0.00125
  output = file
 [../]
# Define output file(s)
[Output]
 file base = out IFA-597 3 ROD8 # prefix of output file name
 postprocessor csv = 1
 interval = 1
 output initial = true
 exodus = true
 perf log = true
 max pps rows screen = 40
```

APPENDIX B: RISO AN3 BISON INPUT FILE

```
[GlobalParams]
 density = 10303.0
 disp x = disp x
 disp y = disp y
 order = FIRST
 family = LAGRANGE
 energy per fission = 3.2e-11 # J/fission
# Specify coordinate system type
[Problem]
 coord type = RZ
# Set problem dimension (2d-rz here) and import mesh file
[Mesh]
 file = 2 smeared pellets MEDIUM rz.e
 displacements = 'disp x disp y'
patch size = 1000
[]
# Define dependent variables, element order and shape function family, and initial conditions
[Variables]
[./disp x]
[../]
 [./disp_y]
[../]
 [./temp]
  initial condition = 300.0 # set initial temp to ambient
[../]
[]
# Define auxillary variables, element order and shape function family
[AuxVariables]
 [./fission rate]
  block = 'fuel pellet 1 fuel pellet 2'
                                          # defined for the fuel material with no hole only
 [./fast neutron flux]
  block = 'clad'
 [../]
 [./fast neutron fluence]
  block = 'clad'
 [../]
```

```
[./burnup]
  block = 'fuel_pellet_1 fuel_pellet_2'
 [./hydrostatic stress]
  order = CONSTANT
  family = MONOMIAL
 [../]
 [./stress xx]
               # stress aux variables are defined for output; this is a way to get integration point
variables to the output file
  order = CONSTANT
  family = MONOMIAL
[../]
[./stress yy]
  order = CONSTANT
  family = MONOMIAL
[../]
 [./stress zz]
  order = CONSTANT
  family = MONOMIAL
 [../]
 [./creep strain xx]
  order = CONSTANT
  family = MONOMIAL
[../]
 [./creep strain yy]
  order = CONSTANT
  family = MONOMIAL
[../]
 [./creep strain xy]
  order = CONSTANT
  family = MONOMIAL
[../]
 [./creep strain hoop]
  order = CONSTANT
  family = MONOMIAL
[../]
[./vonmises]
  order = CONSTANT
  family = MONOMIAL
 [../]
```

```
[./creep strain mag]
  order = CONSTANT
  family = MONOMIAL
 [../]
[]
# Define functions to control power and boundary conditions
[Functions]
 [./power profile]
  type = PiecewiseLinearFile # reads and interpolates an input file containing rod average linear power
vs time
  yourFileName = riso an3 power history.csv
  format = columns
  scale factor = 1
 [../]
[./axial peaking factors]
                             # reads and interpolates an input file containing the axial power profile vs
  type = PiecewiseBilinear
  yourFileName = an3 axial peaking.csv
  scale factor = 1
  axis = 1
 [../]
 [./pressure ramp]
                           # reads and interpolates input data defining amplitude curve for coolant and
fill gas pressure
  type = PiecewiseLinear
  x = '0 1e4 103528800 103529000 103794477'
  y = '0 \ 1 \ 1 \ 0.986 \ 0.986'
 [../]
 [./flux]
                # reads and interpolates input data defining fast neutron flux
  type = PiecewiseLinearFile
  yourFileName = riso an3 fast flux.csv
  format = columns
 \lceil ... / \rceil
[./clad temp bc]
  type = PiecewiseLinearFile
  yourFileName = riso an3 clad bc.csv
  format = columns
\lceil ... / \rceil
  type = PiecewiseLinearFile # reads and interpolates an input file containing rod average linear power
  yourFileName = riso an3 power history.csv
  format = columns
 [../]
```

```
[]
# Specify that we need solid mechanics (divergence of stress)
[SolidMechanics]
 [./solid]
  disp r = disp x
  disp z = disp y
  temp = temp
[../]
[]
# Define kernels for the various terms in the PDE system (in all cases here, the axisymmetric (RZ)
version is specified)
[Kernels]
 [./gravity]
               # body force term in stress equilibrium equation
  type = Gravity
  variable = disp y
  value = -9.81
 [../]
             # gradient term in heat conduction equation
 [./heat]
  type = HeatConduction
  variable = temp
 [../]
               # time term in heat conduction equation
[./heat ie]
  type = HeatConductionImplicitEuler
  variable = temp
 [../]
 [./heat source ] # source term in heat conduction equation
   type = NeutronHeatSource
   variable = temp
   block = 'fuel pellet 1 fuel pellet 2'
                                                   # fission rate applied to the fuel (block 2) only
   fission rate = fission rate # coupling to the fission rate aux variable
[../]
П
# Define auxilliary kernels for each of the aux variables
[AuxKernels]
 [./fissionrate]
                      # computes the volumetric fission rate as a function of time and space
  type = FissionRateAuxLWR
  variable = fission rate
  block = 'fuel pellet 1 fuel pellet 2'
  function1 = power profile
                                    # using the power function defined above
  function2 = axial peaking factors
                                       # using the axial power profile function defined above
  pellet diameter = 0.009053
  pellet inner diameter = 0
  f volume reduction = 1.0112
  execute on = timestep begin
```

```
\lceil ... / \rceil
[./fast neutron flux]
 type = FastNeutronFluxAux
 variable = fast neutron flux
 block = 'clad'
 axial power profile = axial peaking factors
 function = flux
 factor = 4.9e17
 execute on = timestep begin
[../]
[./fast neutron fluence]
 type = FastNeutronFluenceAux
 variable = fast neutron fluence
 fast neutron flux = fast neutron flux
 execute on = timestep begin
[../]
[./burnup]
                     # computes burnup as a function of time and space
 type = BurnupAux
 variable = burnup
 block = 'fuel pellet 1 fuel pellet 2'
 fission rate = fission rate
                                  # coupling to the fission rate aux variable
 molecular weight = 0.270
 execute on = timestep begin
[../]
[./hydrostatic stress]
                                # include hydrostatic stress for possible use in ForMas
 block = 'fuel pellet 1 fuel pellet 2'
 type = MaterialTensorAux
 tensor = stress
 variable = hydrostatic stress
 quantity = hydrostatic
 execute on = timestep
[...]
[./stress xx]
                     # computes stress components for output
 type = MaterialTensorAux
 tensor = stress
 variable = stress xx
 index = 0
 execute on = timestep # for efficiency, only compute at the end of a timestep
[../]
[./stress yy]
 type = MaterialTensorAux
 tensor = stress
 variable = stress yy
 index = 1
```

```
execute on = timestep
[../]
[./stress zz]
 type = MaterialTensorAux
 tensor = stress
 variable = stress zz
 index = 2
 execute on = timestep
[../]
[./vonmises]
 type = MaterialTensorAux
 tensor = stress
 variable = vonmises
 quantity = vonmises
 execute on = timestep
[../]
[./creep strain xx]
                           # computes stress components for output
 type = MaterialTensorAux
 tensor = creep strain
 variable = creep strain xx
 index = 0
 execute on = timestep # for efficiency, only compute at the end of a timestep
[../]
[./creep strain yy]
 type = MaterialTensorAux
 tensor = creep strain
 variable = creep strain yy
 index = 1
 execute on = timestep
[../]
[./creep strain xy]
 type = MaterialTensorAux
 tensor = creep strain
 variable = creep_strain_xy
 index = 3
 execute on = timestep
[../]
[./creep strain hoop]
 type = MaterialTensorAux
 tensor = creep strain
 variable = creep strain hoop
 index = 2
 execute on = timestep
[../]
```

```
[./creep strain mag]
  type = MaterialTensorAux
  tensor = creep strain
  variable = creep strain mag
  quantity = plasticstrainmag
  execute on = timestep
 [../]
# Define mechanical contact between the fuel (sideset=10) and the clad (sideset=5)
[Contact]
 [./pellet clad mechanical]
  master = 5
  slave = 10
  disp x = disp x
  disp y = disp y
  penalty = 1e7
  model = experimental
 [../]
\prod
# Define thermal contact between the fuel (sideset=10) and the clad (sideset=5)
[ThermalContact]
 [./thermal contact]
  type = GapHeatTransferLWR
  variable = temp
  master = 5
  slave = 10
  initial moles = initial moles
                                   # coupling to a postprocessor which supplies the initial plenum/gap
gas mass
  gas released = fis gas released
                                     # coupling to a postprocessor which supplies the fission gas addition
  contact pressure input = 35e6
                                     # set contact pressure equal to the pressure required to reach yeild
  roughness clad = 1.0e-6
  roughness fuel = 1.0e-6
  jumpdistance fuel = 5e-6
  jumpdistance clad = 5e-6 # sum of jump distances = 10 um
  initial gas fractions = '1 0 0 0 0 0 0'
  refab time = 103529000
  refab gas fractions = '1 0 0 0 0 0 0'
 \lceil ... / \rceil
П
# Define boundary conditions
[BCs]
# pin pellets and clad along axis of symmetry (y)
 [./no x all]
  type = DirichletBC
  variable = disp x
```

```
boundary = 12
  value = 0.0
 [../]
# pin clad bottom in the axial direction (y)
 [./no y clad bottom]
  type = DirichletBC
  variable = disp y
  boundary = '1'
  value = 0.0
 [...]
# pin fuel bottom in the axial direction (y)
 [./no y fuel bottom]
  type = DirichletBC
  variable = disp y
  boundary = '1020'
  value = 0.0
 [...]
 [./temp]
  type = FunctionDirichletBC
  boundary = '1 2 3'
  variable = temp
  function = clad temp bc
 [../]
[./Pressure]
# apply coolant pressure on clad outer walls
  [./coolantPressure]
   boundary = '1 2 3'
   factor = 1.552e7 #changes to 1.53e7 for bump tests
   function = pressure ramp # use the pressure ramp function defined above
  [../]
 [../]
 [./PlenumPressure]
# apply plenum pressure on clad inner walls and pellet surfaces
  [./plenumPressure]
   boundary = 9
   initial pressure = 2.31e6 #changes to 1e5 for bump tests
   startup time = 1.0e4
   R = 8.3143
   output initial moles = initial moles
                                            # coupling to post processor to get inital fill gas mass
   temperature = ave temp interior
                                           # coupling to post processor to get gas temperature
approximation
   volume = gas volume
                                        # coupling to post processor to get gas volume
   material input = fis gas released
                                           # coupling to post processor to get fission gas added
   output = plenum pressure
                                         # coupling to post processor to output plenum/gap pressure
   refab time = 103529000
   refab pressure = 1.57e6
```

```
refab temperature = 500
   refab volume = 7.0e-6
  [../]
 [../]
[]
# Define material behavior models and input material property data
[Materials]
 [./density1]
  type = Density
  block = 'clad'
  density = 6551.0
 [...]
 [./density2]
  type = Density
  block = 'fuel pellet 1 fuel pellet 2'
 [../]
 [./fuel thermal]
                              # temperature and burnup dependent thermal properties of UO2 (bison
kernel)
  type = ThermalUO2
  block = 'fuel pellet 1 fuel pellet 2'
  temp = temp
  burnup = burnup
 [../]
 [./fuel solid mechanics swelling] # free expansion strains (swelling and densification) for UO2
(bison kernel)
  type = VSwellingUO2
  block = 'fuel pellet 1 fuel pellet 2'
  temp = temp
  burnup = burnup
 [../]
 [./fuel creep]
                             # thermal and irradiation creep for UO2 (bison kernel)
  type = CreepUO2
  block = 'fuel pellet 1 fuel pellet 2'
  disp r = disp x
  disp z = disp y
  temp = temp
  fission rate = fission rate
  youngs modulus = 2.e11
  poissons ratio = .345
  thermal expansion = 10e-6
  grain radius = 5.85e-6 # maximum grain size measured during PIE
  oxy to metal ratio = 2.0
  max its = 10
  output iteration info = false
 [../]
```

```
[./fuel relocation]
  type = Relocation UO2
  block = 'fuel pellet 1 fuel pellet 2'
  burnup = burnup
  diameter = 0.009053 #Fuel pellet diameter in m
  gap = 2.05e-4 \# diametral gap in m
  burnup relocation stop = 0.029
 [./clad thermal]
                               # general thermal property input (elk kernel)
  type = HeatConductionMaterial
  block = 'clad'
  thermal conductivity = 16.0
  specific heat = 330.0
 [../]
 [./clad solid mechanics]
                                   # thermoelasticity and thermal and irradiation creep for Zr4 (bison
kernel)
  type = ThermalIrradiationCreepZr4
  block = 'clad'
  disp r = disp x
  disp z = disp y
  temp = temp
  fast neutron flux = fast neutron flux
  youngs modulus = 7.5e10
  poissons ratio = 0.3
  thermal expansion = 5.0e-6
  max its = 5000
  output iteration info = false
 [...]
 [./clad irrgrowth]
  type = IrradiationGrowthZr4
  block = 'clad'
  fast neutron fluence = fast neutron fluence
 [../]
 [./fission gas release]
                                # Forsberg-Massih fission gas release mode
  type = ForMas
  block = 'fuel pellet 1 fuel pellet 2'
  temp = temp
  fission rate = fission rate
                                # coupling to fission rate aux variable
  grain radius = 5.85e-6
  plenum pressure = plenum pressure
  hydrostatic stress = hydrostatic stress
  calibration factor = 6.5
[../]
[]
[Dampers]
```

```
[./limitT]
  type = MaxIncrement
  max increment = 50.0
  variable = temp
[../]
П
[Preconditioning]
[./SMP]
  type = SMP
  full = true
\lceil ... / \rceil
[]
[Executioner]
# type = Transient
 type = AdaptiveTransient
# PETSC options
 petsc options = '-snes mf operator -ksp monitor -ksp gmres modifiedgramschmidt'
petsc options iname = '-snes type -snes ls -ksp gmres restart -pc type -pc composite pcs -
sub 0 pc hypre type -sub 0 pc hypre boomeramg max iter -
sub 0 pc hypre boomeramg grid sweeps all-sub 1 sub pc type-pc composite type-ksp type-
mat mffd type'
petsc options value = 'ls
                                                                                        2
                            basic 201
                                               composite hypre,asm
                                                                       boomeramg
                       lu
                                   multiplicative
                                                 fgmres ds'
# controls for linear iterations
 1 \text{ max its} = 100
1 \text{ tol} = 8e-3
 # controls for nonlinear iterations
 nl max its = 10
 nl rel tol = 1e-4
 nl abs tol = 1e-10
 # time control
 start time = 0.0
 dt = 2.0e2
 end time = 103789797
 num steps = 5000.0
# direct control of time steps vs time (optional)
              103528800 103529000 103529119 103531160 103533619 103537700 103552640
time t = 0
103567520 103582160 103596439 103611019 103625239 103701019 103701870 103781900
103782929'
 dtmax = 1e6
 dtmin = 1
 optimal iterations = 6
```

```
growth factor = 1.3
 iteration window = 0.4
 linear iteration ratio = 100
# Define postprocessors (some are required as specified above; others are optional; many others are
available)
[Postprocessors]
 [./ave temp interior]
                              # average temperature of the cladding interior and all pellet exteriors
   type = SideAverageValue
   boundary = 7
   variable = temp
 [../]
 [./clad inner vol]
                           # volume inside of cladding
  type = InternalVolume
  boundary = 7
  variable = disp x
  output = file
 [../]
 [./pellet volume]
                           # fuel pellet total volume
  type = InternalVolume
  boundary = 8
  variable = disp x
  output = file
 [../]
 [./avg clad temp]
                            # average temperature of cladding interior
  type = SideAverageValue
  boundary = 7
  variable = temp
 [../]
 [./fis gas produced]
                            # fission gas produced (moles)
  type = ElementIntegralFisGasProduce
  variable = temp
  block = 'fuel pellet 1 fuel pellet 2'
 [../]
 [./fis gas released]
                           # fission gas released to plenum (moles)
  type = ElementIntegralFisGasRelease
  variable = temp
  block = 'fuel pellet 1 fuel pellet 2'
 [../]
                          # gas volume
 [./gas volume]
  type = Internal Volume
  boundary = 9
```

```
variable = disp x
 [../]
 [./plenum pressure]
                            # pressure within plenum and gap
  type = Reporter
 [../]
 [./initial moles]
                         # initial fill gas mass (moles)
  type = Reporter
  output = file
 [../]
 [./flux from clad]
                           # area integrated heat flux from the cladding
  type = SideFluxIntegral
  variable = temp
  boundary = 5
  diffusivity = thermal conductivity
 [../]
 [./flux from fuel]
                          # area integrated heat flux from the fuel
  type = SideFluxIntegral
  variable = temp
  boundary = 10
  diffusivity = thermal conductivity
 [../]
 [./ dt]
                     # time step
  type = PrintDT
 [../]
 [./nonlinear its]
                        # number of nonlinear iterations at each timestep
  type = PrintNumNonlinearIters
 [../]
 [./rod total power]
  type = ElementIntegralPower
  variable = temp
  fission rate = fission rate
  block = 'fuel pellet_1 fuel_pellet_2'
 \lceil ... / \rceil
 [./average fission rate]
  type = AverageFissionRate
  rod ave lin pow = power profile
  fuel outer radius = 0.0045265
  fuel inner radius = 0.00125
  output = file
 [../]
[]
```

```
# Define output file(s)
[Output]
file_base = output # prefix of output file name
interval = 1
output_initial = true
exodus = true
perf_log = true
max_pps_rows_screen = 40
[]
```

APPENDIX C: RISO AN4 BISON INPUT FILE

```
[GlobalParams]
 density = 10303.0
disp x = disp x
disp_y = disp_y
order = FIRST
family = LAGRANGE
energy_per_fission = 3.2e-11
[]
[Problem]
coord type = RZ
П
[Mesh]
file = pelletcladsmearedmedium1 rz.e
displacements = 'disp x disp y'
patch size = 1000
[]
[Variables]
[./disp_x]
[../]
[./disp_y]
[../]
[./temp]
  initial_condition = 300.0
[../]
[]
[AuxVariables]
[./fission_rate]
 block = 2
[../]
 [./fast neutron flux]
  block = 1
```

```
[../]
[./fast neutron fluence]
 block = 1
[../]
[./burnup]
 block = 2
[../]
[./hydrostatic_stress]
 order = CONSTANT
 family = MONOMIAL
[../]
[./stress xx]
 order = CONSTANT
 family = MONOMIAL
[../]
[./stress_yy]
 order = CONSTANT
 family = MONOMIAL
[../]
[./stress_zz]
 order = CONSTANT
 family = MONOMIAL
[../]
[./creep_strain_xx]
 order = CONSTANT
 family = MONOMIAL
[../]
[./creep_strain_yy]
 order = CONSTANT
 family = MONOMIAL
[../]
[./creep_strain_xy]
 order = CONSTANT
 family = MONOMIAL
[../]
[./creep_strain_hoop]
 order = CONSTANT
```

```
family = MONOMIAL
 [../]
 [./vonmises]
  order = CONSTANT
  family = MONOMIAL
 \lceil ... / \rceil
 [./creep strain mag]
  order = CONSTANT
  family = MONOMIAL
 [../]
[]
[Functions]
 [./power profile]
  type = PiecewiseLinearFile
  yourFileName = an4 power history.csv
  scale factor = 1
  format = columns
 [../]
 [./axial peaking factors]
  type = PiecewiseBilinear
  yourFileName = an4_axial_peaking.csv
  scale factor = 1
  axis = 1
 [../]
 [./pressure_ramp]
  type = PiecewiseLinear
  x = '0 1e4 103528800 103529000 103795758'
  y = '0 \ 1 \ 1 \ 0.986 \ 0.986'
 [../]
 [./flux]
  type = PiecewiseLinearFile
  yourFileName = an4 fast flux.csv
  format = columns
 \lceil ... / \rceil
```

```
[./clad_temp_bc]
  type = PiecewiseLinearFile
  yourFileName = an4_clad_bc.csv
  format = columns
[../]
 [./q]
  type = PiecewiseLinearFile
  yourFileName = an4 power history.csv
  format = columns
[../]
[]
[SolidMechanics]
 [./solid]
  disp_r = disp_x
  disp_z = disp_y
  temp = temp
 [../]
[]
[Kernels]
 [./gravity]
  type = Gravity
  variable = disp_y
  value = -9.81
 [../]
 [./heat]
  type = HeatConduction
  variable = temp
 [../]
[./heat_ie]
  type = HeatConductionImplicitEuler
  variable = temp
 [../]
 [./heat_source]
```

```
type = NeutronHeatSource
   variable = temp
   block = 2
   fission_rate = fission_rate
 [../]
[]
[AuxKernels]
 [./fissionrate]
  type = FissionRateAuxLWR
  variable = fission rate
  block = 2
  function1 = power profile
  function2 = axial peaking factors
  pellet diameter = 0.009053
  pellet inner diameter = 0.0025
  f volume reduction = 1
  execute on = timestep begin
 \lceil ... / \rceil
 [./fast neutron flux]
  type = FastNeutronFluxAux
  variable = fast neutron flux
  block = 1
  axial_power_profile = axial_peaking_factors
  function = flux
  factor = 4.9e17
  execute on = timestep begin
 [../]
 [./fast neutron fluence]
  type = FastNeutronFluenceAux
  variable = fast neutron fluence
  fast neutron flux = fast neutron flux
  execute on = timestep begin
 [../]
 [./burnup]
  type = BurnupAux
  variable = burnup
```

```
block = 2
 fission rate = fission rate
 molecular weight = 0.270
 execute_on = timestep_begin
[../]
[./hydrostatic stress]
 block = 2
 type = MaterialTensorAux
 tensor = stress
 variable = hydrostatic stress
 quantity = hydrostatic
 execute_on = timestep
[../]
[./stress xx]
 type = MaterialTensorAux
 tensor = stress
 variable = stress xx
 index = 0
 execute on = timestep
[../]
[./stress_yy]
 type = MaterialTensorAux
 tensor = stress
 variable = stress_yy
 index = 1
 execute on = timestep
[../]
[./stress zz]
 type = MaterialTensorAux
 tensor = stress
 variable = stress zz
 index = 2
 execute_on = timestep
[../]
[./vonmises]
 type = MaterialTensorAux
```

```
tensor = stress
 variable = vonmises
 quantity = vonmises
 execute_on = timestep
[../]
[./creep strain xx]
 type = MaterialTensorAux
 tensor = creep strain
 variable = creep strain xx
 index = 0
 execute_on = timestep
[../]
[./creep strain yy]
 type = MaterialTensorAux
 tensor = creep\_strain
 variable = creep_strain_yy
 index = 1
 execute on = timestep
[../]
[./creep_strain_xy]
 type = MaterialTensorAux
 tensor = creep_strain
 variable = creep strain xy
 index = 3
 execute on = timestep
[../]
[./creep_strain_hoop]
 type = MaterialTensorAux
 tensor = creep strain
 variable = creep strain hoop
 index = 2
 execute_on = timestep
[../]
[./creep_strain_mag]
 type = MaterialTensorAux
 tensor = creep strain
```

```
variable = creep strain mag
  quantity = plasticstrainmag
  execute on = timestep
 [../]
[]
[Contact]
 [./pellet clad mechanical]
  master = 5
  slave = 10
  disp_x = disp_x
  disp_y = disp_y
  penalty = 1e8
  model = experimental
 [../]
[]
[ThermalContact]
 [./thermal contact]
  type = GapHeatTransferLWR
  variable = temp
  master = 5
  slave = 10
  initial_moles = initial_moles
  gas released = fis gas released
  contact\_pressure\_input = 35e6
  roughness clad = 1.0e-6
  roughness fuel = 1.0e-6
  initial gas fractions = '1 0 0 0 0 0 0'
  refab time = 103529000
  refab gas fractions = '0 0 0 1 0 0 0'
 [../]
[]
[BCs]
 [./no_x_all]
  type = DirichletBC
  variable = disp x
  boundary = 12
  value = 0.0
```

```
[../]
[./no y clad bottom]
 type = DirichletBC
 variable = disp_y
 boundary = '1'
 value = 0.0
[../]
[./no y fuel bottom]
 type = DirichletBC
 variable = disp_y
 boundary = '1020'
 value = 0.0
\lceil ... / \rceil
[./temp]
 type = FunctionDirichletBC
 boundary = '1 2 3'
 variable = temp
 function = clad temp bc
[../]
[./Pressure]
 [./coolantPressure]
  boundary = '1 2 3'
  factor = 1.552e7
  function = pressure ramp
 [../]
[../]
[./PlenumPressure]
 [./plenumPressure]
  boundary = 9
  initial pressure = 2.31e6
  startup\_time = 1.0e4
  R = 8.3143
  output initial moles = initial moles
  temperature = ave temp interior
  volume = gas volume
  material input = fis gas released
```

```
output = plenum_pressure
    refab time = 103529000
    refab pressure = 1.0e5
    refab_temperature = 293
   refab\_volume = 7.9e-6
  [../]
 [../]
[]
[Materials]
 [./density1]
  type = Density
  block = 1
  density = 6551.0
 [../]
 [./density2]
  type = Density
  block = 2
 [../]
 [./fuel thermal]
  type = ThermalUO2
  block = 2
  temp = temp
  burnup = burnup
 [../]
 [./fuel_solid_mechanics_swelling]
  type = VSwellingUO2
  block = 2
  temp = temp
  burnup = burnup
 [../]
 [./fuel_creep]
  type = CreepUO2
  block = 2
  disp r = disp x
  disp_z = disp_y
  temp = temp
```

```
fission rate = fission rate
 youngs modulus = 2.e11
 poissons ratio = .345
 thermal_expansion = 10e-6
 grain radius = 4.9e-6
 oxy to metal ratio = 2.0
 max its = 10
 output iteration info = false
[../]
[./fuel relocation]
 type = Relocation UO2
 block = 2
 burnup = burnup
 diameter = 0.009053
 q = q
 gap = 2.05e-4
 burnup relocation stop = 0.029
\lceil ... / \rceil
[./clad thermal]
 type = HeatConductionMaterial
 block = 1
 thermal conductivity = 16.0
 specific_heat = 330.0
[../]
[./clad solid mechanics]
 type = ThermalIrradiationCreepZr4
 block = 1
 disp r = disp x
 disp z = disp y
 temp = temp
 fast neutron flux = fast neutron flux
 youngs modulus = 7.5e10
 poissons_ratio = 0.3
 thermal expansion = 5.0e-6
 max its = 5000
 output iteration info = false
\lceil ... / \rceil
```

```
[./clad irrgrowth]
      type = IrradiationGrowthZr4
      block = 1
      fast neutron fluence = fast neutron fluence
     [../]
     [./fission gas release]
      type = ForMas
      block = 2
      temp = temp
      fission rate = fission rate
      grain radius = 100 #Shut off fission gas production
      plenum pressure = plenum pressure
      hydrostatic stress = hydrostatic stress
      calibration factor = 100
    [../]
   []
   [Dampers]
     [./limitT]
      type = MaxIncrement
     max increment = 25.0
      variable = temp
    [../]
   П
   [Preconditioning]
     [./SMP]
      type = SMP
      full = true
    [../]
    [Executioner]
     type = AdaptiveTransient
    # PETSC options
     petsc options = '-snes mf operator -ksp monitor -ksp gmres modifiedgramschmidt'
     petsc options iname = '-snes type -snes ls -ksp gmres restart -pc type -pc composite pc -
sub 0 pc hypre type -sub 0 pc hypre boomeramg max iter
sub 0 pc hypre boomeramg grid sweeps all -sub 1 sub pc type -pc_composite_type -ksp_type -
mat mffd type'
```

```
petsc_options_value = 'ls
                                basic 201
                                                   composite hypre,asm
                                                                           boomeramg
2
                                   multiplicative
                                                  fgmres ds'
                       lu
    # controls for linear iterations
    1 \text{ max its} = 100
    1 \text{ tol} = 8e-3
    # controls for nonlinear iterations
    nl max its = 10
    nl rel tol = 1e-3
    nl abs tol = 1e-8
    # time control
    start time = 0.0
    dt = 2.0e2
    end time = 103795758
    num steps = 50000.0
    # direct control of time steps vs time (optional)
    time t = 0.103528800 103529000 103534230 103536080 103538960 103542079 103557860
103572319\ 103586899\ 103601180\ 103615760\ 103630099\ 103705820\ 103706970\ 103785380
103786350'
    dtmax = 1e6
    dtmin = 1
    optimal iterations = 4
    growth factor = 1.3
    iteration window = 0.4
    linear iteration ratio = 100
   []
   [Postprocessors]
    [./ave_temp_interior]
      type = SideAverageValue
      boundary = 9
      variable = temp
     [../]
    [./clad inner vol]
     type = InternalVolume
```

2

```
boundary = 7
 variable = disp x
 output = file
[../]
[./pellet_volume]
 type = InternalVolume
 boundary = 8
 variable = disp x
 output = file
[../]
[./avg_clad_temp]
 type = SideAverageValue
 boundary = 7
 variable = temp
[../]
[./fis_gas_produced]
 type = ElementIntegralFisGasProduce
 variable = temp
 block = 2
[../]
[./fis_gas_released]
 type = ElementIntegralFisGasRelease
 variable = temp
 block = 2
[../]
[./gas_volume]
 type = InternalVolume
 boundary = 9
 variable = disp x
[../]
[./plenum_pressure]
 type = Reporter
[../]
[./initial_moles]
```

```
type = Reporter
 output = file
[../]
[./flux_from_clad]
 type = SideFluxIntegral
 variable = temp
 boundary = 5
 diffusivity = thermal conductivity
[../]
[./flux_from_fuel]
 type = SideFluxIntegral
 variable = temp
 boundary = 10
 diffusivity = thermal conductivity
[../]
[./_dt]
 type = PrintDT
[../]
[./nonlinear_its]
 type = PrintNumNonlinearIters
[../]
[./rod_total_power]
 type = ElementIntegralPower
 variable = temp
 fission_rate = fission_rate
 block = 2
[../]
[./average fission rate]
 type = AverageFissionRate
 rod_ave_lin_pow = power_profile
 fuel outer radius = 0.0045265
 fuel inner radius = 0.00125
 output = file
[../]
```

```
[]
```

```
[Output]
file_base = output
interval = 1
output_initial = true
exodus = true
perf_log = true
max_pps_rows_screen = 40
[]
```